Q20: Given is the complex number $z=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$. In polar form, the number can be represented with radius $r=1$ and $\varphi=\frac{\pi}{3}+$
-1
0
π

Q21: Given is the complex number $z=-\frac{4}{5}+\frac{3}{5} i$. In polar form, the number can be represented with radius $r=5$ and $\varphi=\arctan \left(-\frac{3}{4}\right)+\ldots$

$$
\begin{aligned}
& -\pi \\
& 0 \\
& \pi
\end{aligned}
$$

\square
Q22: Calculate $(\sqrt{3}+i)^{7}$

$$
\begin{aligned}
& \text { Calculate }(\sqrt{3}+i) \\
& \qquad(\sqrt{3}+i)^{7}=128 e^{-i 5 \pi / 6}
\end{aligned}
$$

$$
(\sqrt{3}+i)^{7}=64 e^{-i 5 \pi / 6}
$$

$$
(\sqrt{3}+i)^{7}=128 e^{-i 7 \pi / 6}
$$

$(\sqrt{3}+i)^{7}=e^{-i 7 \pi / 6}$
1
Q23: Calculate the absolute value of $(1+i)^{2000}$ $\sqrt{2}$
-2^{1000}
$(2 i)^{1000}$
$2^{1000} e^{\frac{\pi i}{4}}$ $2_{2^{1000}} e^{\frac{\pi i}{4}}$

Q24: The figure shows the area B in the complex plane with $B=\left\{z=r e^{i \varphi} \in \mathbb{C} \mid 2 \leq r \leq 4, \frac{\pi}{12} \leq \varphi \leq \frac{5 \pi}{12}\right\}$

Decide for which numbers z_{1} and z_{2} the product $1 \cdot z_{2}$ is located in
$z_{1}=\frac{3 \sqrt{3}}{2}+\frac{3}{2} i$,
$z_{2}=2 \sqrt{2}+2 \sqrt{2} i$
$z_{1}=5 e^{\frac{\pi}{15} i}, \quad z_{2}=\frac{1}{2} e^{\frac{\pi}{6} i}$
$z_{1}=3 e^{i \frac{\pi}{3}}, \quad z_{2}=e^{i \frac{\pi}{4}}$

Q25: Given are the complex numbers
$z_{1}=4\left(\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right)$ and $z_{2}=1+i \sqrt{3}$.
Which statements about $z=z_{1} / z_{2}$ are correct?
$\arg (z)=\pi$
$\arg (z)=\pi / 2$
$\arg (z)=3$
I

Q26: Let $z \in \mathbb{C}$. For which complex number $w \in \mathbb{C}$ does the product $z w$ result from z through a clockwise rotation by 45° and a reduction of length by a factor 0.5 ?

$$
\begin{aligned}
w & =2 e^{-i \pi / 2} \\
w & =\frac{1}{2} e^{-i \pi / 2} \\
w & =\frac{1}{2} e^{i \pi / 2}
\end{aligned}
$$

So ein wibt es nicht

Q27: For any complex $c \neq 0$, the equation $z^{n}=c$ has exactly n solutions. True or false?

True
 False
 Don't know

Q28: If you had to solve the equation $z^{3}=-3+3 i$, what would be the first step?
You plug $z=x+i y$ into the equa-
tion and solve.
You calculate the polar form of

You calculate the polar form of
$-3+3 i$

Q29: Is there a $w \in \mathbb{C}$, such that the points A, B und C are the third roots of w ?

Yes No

Q30: Is there a $w \in \mathbb{C}$, such that the points A, B, C, D and E are the fifth roots of w ?

Yes
No

Q31: Is there a real w, such that the points A, B, C, D and E are the fifth roots of w ?

No

Q32: Every polynomial of degree three must have at least one real point where it is zero

```
True
```

False

Q33: Every real polynomial of degree three must have at least one real point where it is zero.

True
 False

Q34: Which parametrization corresponds to the figure?
(2)
$(4 \cos (t), 2 \sin (2 t))$
$(4 \cos (2 t), 2 \sin (2 t))$
$(4 \cos (t), 2 \sin (t))$
$(-4 \cos (2 t), 2 \sin (2 t))$

Q35: Which of the following parameterizations parametrizes a curve other than a circle of radius R ?

$$
\begin{aligned}
& (R \cos (t), R \sin (t)) \\
& \left(R \cos \left(t^{2}\right), R \sin \left(t^{2}\right)\right) \\
& (R \cos (-t), R \sin (-t)) \\
& \left(R \cos (t), R \sin \left(t^{2}\right)\right)
\end{aligned}
$$

