Q36: Is $(R \cos (-t), R \sin (-t))$ a parameterization of a circle with radius R ?

Yes, I am sure
Yes, I think so (but I am not completely sure)
No, I don't think so (but I am not completely sure)
No, surely not

Q37: Is $(R \cos (t), R \sin (-t))$ a parameterization of a circle with radius R ?

Yes, I am sure

Yes, I think so (but I am not completely sure)

$$
\frac{A}{x-2}+\frac{B}{x-8}+\frac{C X+D}{x^{2}+1}
$$

No, I don't think so (but I am not completely sure)

No, surely not

Q38: Mean-value theorem had been presented on the board.
Claim: For the function $f(x)=\frac{1}{x}$ this theorem is true with $c=\sqrt{a b}$, with c being the geometrical average of $a x$ and b.

That is true

That is not true

Q39: Which partial fraction decomposition would you use for the following function:

$$
\begin{aligned}
& \frac{x^{3}-23 x}{(x-2)(x-8)\left(x^{2}-1\right)} \\
& +\frac{D}{x-1}
\end{aligned}
$$

none, you would need to perform
a polynomial division first
$\frac{A}{x-2}+\frac{B}{x-8}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}}$
$\frac{B}{x-2}+\frac{B}{x-8}+\frac{(x}{x^{2}-1}$

Q40: Which partial fraction decomposition would you divide the following function: $\frac{x^{3}-23 x}{(x-2)(x-8)\left(x^{2}+1\right)}$
$\frac{A}{x-2}+\frac{B}{x-8}+\frac{C}{x+1}+\frac{D}{x-1}$ none, you would need to perform
a polynomial division first
$\frac{A}{x-2}+\frac{B}{x-8}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}}$

$$
\frac{A}{x-2}+\frac{B}{x-8}+\frac{C X+D}{x^{2}+1}
$$

Q41: Which partial fraction decomposition would you use for the following function: $\frac{x^{3}-23 x}{(x-8)\left(x^{2}+1\right)}$

$$
\frac{B}{x-8}+\frac{C}{x+1}+\frac{D}{x-1}
$$

with none, you would need to per-
form a polynomial division first
$\frac{B}{x-8}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}}$
$\frac{B}{x-8}+\frac{C X+D}{x^{2}+1}$
Q42: Which partial fraction decomposition would you use for the following function: $\frac{x^{3}-23 x}{(x-2)(x-8)(x+1)^{2}}$

$$
\frac{A}{x-2}+\frac{B}{x-8}+\frac{C}{x+1}+\frac{D}{x-1}
$$

none, you would need to perform
a polynomial division first

$$
\frac{A}{x-2}+\frac{B}{x-8}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}}
$$

Q43: Here is a segment of the Archimedes spiral, which is defined by $R(\phi)=\phi$.

Which integral calculates the corresponding arc length?

$$
\begin{aligned}
& \int_{0}^{4 \pi} \sqrt{1+t^{2}} d \phi \\
& \int_{0}^{4 \pi} \sqrt{1+\phi^{2}} d \phi \\
& \int_{2}^{4 \pi} \sqrt{1+t^{2}} d t \\
& \int_{0}^{4 \pi} \sqrt{\phi+\phi^{2}} d \phi
\end{aligned}
$$

Q44: Here is a segment of the Archimedes spiral, which is defined by $R(\phi)=\phi$.

Which integral calculates the area of the sector?

$$
\begin{aligned}
& \int_{0}^{4 \pi} \frac{1}{2} \phi^{2} d \phi \\
& \int_{0}^{4 \pi} \sqrt{1+\phi^{2}} d \phi \\
& \int_{\pi}^{3 \pi} \frac{1}{2} t^{2} d t
\end{aligned}
$$

$$
\int_{2 \pi}^{4 \pi} \frac{1}{2} t^{2} d t
$$

