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Abstract 
Discrete modelling as the basis of problem solving is an essential skill for computer 
scientists, but the correct use of formal languages like propositional logic for such purposes 
remains a big challenge for undergraduate students. The DIMO tool provides support for the 
acquisition of formal modelling competencies using propositional logic. We extend the tool by 
generic capabilities to generate problem-specific feedback to students. This allows them to 
visualise the result of their modelling attempts in terms of the modelled problem at hand, thus 
helping students to initiate corresponding learning cycles. 

Keywords: e-learning; propositional logic; teaching modelling; feedback systems; visual 
feedback; error-driven learning. 

1. Introduction 

Formal modelling essentially happens in many places in courses and textbooks on 
programming, computational complexity, formal languages and mathematical logic where 
specific formalisms are being presented for specific or general modelling tasks, e.g. 
programming languages, abstract machines, or logical formulas, cf. [1]. 

Here we are concerned with formal modelling in propositional logic (PL), a simple language 
that is widely used in computer science, from Boolean circuits [2] to planning in A.I. [3], 
computer-aided verification [4], cryptanalysis [5] and many more, mainly due to nowadays’ 
access to highly efficient SAT solvers.   

The ability to use such a fundamental modelling language like PL as a problem-solving tool is 
a standard competency to be acquired by computer science students. PL is therefore 
typically part of compulsory modules on formal logic or discrete mathematics, cf. [6]. The 
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ability to use PL as a modelling language to tackle (real-world) problems typically exceeds 
the level of writing and evaluating single formulas. Instead, students must learn to read and 
construct parametrised formula schemes, see for instance the standard proof of NP-
hardness of SAT which constructs a formula scheme 𝜑𝜑𝒜𝒜,𝑝𝑝,𝑤𝑤 depending on a Turing machine 
𝒜𝒜, a polynomial 𝑝𝑝 and a word 𝑤𝑤. Likewise, the fact that satisfiability for PL is a standard 
problem in NP can be used to show that other problems belong to NP as well, for instance 
the 3-Colourability problem, by constructing, given an undirected graph 𝐺𝐺, a polynomially 
sized formula 𝜑𝜑𝐺𝐺 that is satisfiable iff 𝐺𝐺 is 3-colourable. The ability to correctly read, write and 
evaluate such formula schemes introduces a whole new level of difficulty for students. 

While there are numerous high-quality learning tools designed to develop basic PL 
competencies such as writing, evaluating, and normalising single formulas, as for instance 
discussed in an older overview [7], and demonstrated by recent tools [8], these often fall 
short when addressing application-oriented formal modelling as described above. The latter 
enjoys rudimentary support only, for instances through logical quizzes, with very few notable 
exceptions, cf. [9] [10]. 

We have developed DIMO [11] for that purpose. This learning tool essentially acts like an 
interpreter, allowing students to check their formula schemes by enumerating parameters 
and testing instances for satisfiability successively. DIMO, in its first version, provides generic 
and problem-unspecific output in the form of evaluations of propositional variables. To use 
this for checking correctness of a formula scheme, students must link these evaluations to 
instances of the real-world problem at hand, which is error-prone and in fact part of the 
modelling skill to be learnt in the first place. 

This paper extends a preliminary version [12] and reports on extending DIMO’s capabilities to 
provide problem-specific output that enhances the learning of formal modelling by enabling 
feedback in terms of the modelled problem rather than the formal language of PL to be 
learned. Problem-specific output is introduced into DIMO via a simple domain-specific 
language (DSL) whose programs turn propositional evaluations into arbitrary (graphical) 
output. Students do not need to learn this DSL; it allows teachers to equip their exercises in 
the background with a small imperative program that visualises the students’ modelling 
effects. 

2. Modelling in Propositional Logic – A Didactical Perspective 

In general, a PL modelling task is typically an instance of the following scheme. 

given: a (real-world) problem 𝐴𝐴 whose instances 𝐴𝐴(𝑝𝑝) depend 
 on parameters 𝑝𝑝 and are either solvable or unsolvable 

task: construct a propositional formula (scheme) 𝛷𝛷(𝑝𝑝) that 
 is satisfiable if and only if 𝐴𝐴(𝑝𝑝) is solvable 

For instance, in the example above, 𝐴𝐴 is the Queens Problem, the only parameter is n, and 
𝐴𝐴(2), 𝐴𝐴(3) are unsolvable whereas 𝐴𝐴(1) and 𝐴𝐴(𝑛𝑛) for 𝑛𝑛 ≥ 4 are known to be solvable. Logical 



Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed, 
Issue 16 

eleed 10.57813/eleed.v1i16.257.g455  3 

problems other than satisfiability (validity, equivalence, model counting, etc.) can of course 
also serve as target problems (and are supported by DIMO, too). 

This generalisation offers two insights into difficulties that students have with solving such 
exercises. First of all, real-world problems typically depend on domain-specific parameters 
that influence the solution of such problems, and so do the constructed PL formulas. 
Students need to deal with an additional syntactical dimension on top of the language of PL. 
For example, a solution to the modelling task for the Queens Problem using propositions 𝐷𝐷𝑖𝑖,𝑗𝑗 
for “α queen is placed on cell (𝑖𝑖, 𝑗𝑗)” typically is a formula scheme of the form: 

Φ(𝑛𝑛)  =  …∧ � ⋀
𝑛𝑛−1

𝑖𝑖=1
⋀
𝑛𝑛

𝑗𝑗=1
⋀
𝑛𝑛

𝑖𝑖′=𝑖𝑖+1
𝐷𝐷𝑖𝑖,𝑗𝑗 → ¬𝐷𝐷𝑖𝑖′,𝑗𝑗� ∧ … 

The ability to recognize that 𝑛𝑛 is a parameter to this formula whilst 𝑖𝑖, 𝑗𝑗 and 𝑖𝑖′ are meta-
variables used to describe the formula depending on 𝑛𝑛 is not something that students master 
easily. The distinction between parameters and propositions is another source for confusion, 
and so is a sensible choice of a suitable set of atomic propositions depending on the 
parameters. These challenges comprise the syntactic level of learning formal modelling. 

Secondly – and which makes up the semantical level of this learning challenge – students 
need to verify that their model is correct, i.e. Φ𝑛𝑛 is satisfiable iff the instance of the Queens 
Problem for parameter 𝑛𝑛 has a solution. This is typically done by letting a propositional 
evaluation encode a problem instance, here a particular placement of the queens. This 
requires a deep understanding of the role of different parts of the formula w.r.t. the problem at 
hand. The difficulties with the latter can best be described by the theory of Cognitive 
Dimensions of Notations, which discusses the accessibility of a (programming) language via 
the effect of syntactical changes on the semantics, cf. [13] [14]. Despite its syntactical 
simplicity, PL poses difficulties as a modelling formalism because of exactly this property: 
small syntactical changes in a formula can have large impacts on its semantics. The art of 
learning formal modelling is to start “seeing” how the semantics of a formula changes under 
variations in the parameters rather than to only know the meanings of the symbols in the 
formula (scheme) in isolation. 

The learning tool DIMO addresses challenges on both the syntactical and the semantical 
level. Already the first version of DIMO featured a feedback system known from IDEs for 
pointing out errors in programming [11], using syntax highlighting and autocompletion to 
separate different syntactical elements in what may first appear to be a tangled mass of 
symbols to a learning beginner, as shown in Figure 1. 
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Figure 1. The interface of DiMo’s previous version with syntax highlighting and human 

readable formula representation. 

The provision of (tool-)assistance for the semantical level is the focus here. As this concerns 
the ability to validate the quality of a model (here: the formula scheme), which forms the core 
competency of modelling in general, we incorporate ideas from corresponding theories 
targeting related areas in order to enhance DIMO’s learning support capabilities. For 
instance, issues and strategies in learning and teaching modelling are well studied in the field 
of STEM, cf. [15] [16]. The former describes the modelling process as a cycle that involves a 
repeated comparison of the model with the real-world problem; more precisely, the validation 
of a model-based solution in the real world is one of the major difficulties for students and, as 
pointed out above, one of the most important steps in modelling in PL. Admittedly, the data 
for the latter results is based on studies in school mathematics. We believe, based on own 
experience and the generality of the competencies needed for formal modelling, that these 
results carry over to the undergraduate setting in computer science. Thus, to support learning 
in this area the requirements for such a tool are “maximal students independence”, cf. [15] p. 
54, and implied “strategic interventions” aimed at the validation step, cf. [15], p. 52. Typical 
teachers’ interventions for the latter are questions that encourage students to visualise their 
model w.r.t. the real-world problem. This plays a key role in understanding formal principles, 
cf. [17]. 

In PL the latter can be done generically by, for instance, a SAT solver that textually 
“visualises” the satisfiability of a formula in form of a satisfying variable assignment, as it is 
implemented in DIMO’s first version. In the following we present a more involved visualisation 
concept by means of depicting the semantics of a formula in terms of the real-world problem, 
thus helping students to initiate the modelling cycle mentioned above. 
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3. Extending DiMo 

3.1 DIMO’s Main Specs. 
We only provide a very brief description of DIMO’s essential architectural structure und 
features. From a software architecture point of view, DIMO is a classical web-application with 
a backend implemented mainly in OCaml (Objective Caml) and a TypeScript/Angular 
frontend. Formula schemes are written in the so-called DIMO-language. A complete tool 
description is given in [11]. 

3.2 DIMO’s Novel Extension: Problem-Specific Visualisation of PL 
Models. 
The main idea leading to the ability to generate problem-specific visualisations – instead of 
plain propositional models – is based on an extension of DIMO’s language by small 
imperative programs that can iterate over propositional models and print information in some 
interpretable output format. The green dotted box in Figure 2. marks an example program 
that is used to produce graphical output for the Queens Problem from above. 

The output is generated using for-loops over the domain of parameters (cf. lines 4 and 6 of 
the green dotted box), conditional statements over Boolean expressions, in particular, 
arithmetic relations (line 7) and truth values of atomic PL variables (line 12). The evaluation 
of such programs is done in three-valued logic, as the output program may refer to PL 
variables that do not have truth values, for instance because they did not occur in the formula 
scheme created by a student. The core of the output language is a simple print-statement 
that allows arbitrary strings to be created (line 5 or 13). 

This technically simple extension enables the use of different follow-on interpreters for the 
strings created by DIMO’s output program for various instances of the formula scheme. The 
lower part of Figure 2 shows how problem-specific visualisation can be given for the Queens 
Problem 𝑄𝑄 with parameter 𝑛𝑛: (I) the formula scheme Φ𝑄𝑄(𝑛𝑛)  (blue box with rounded corners) 
is instantiated in the background for some parameter value like 𝑛𝑛 = 5, (II) a SAT solver is 
used to compute a satisfying variable assignment 𝜗𝜗 for 𝑄𝑄(5) if there is some, (III) the output 
program (green dotted box) is run with the same parameter evaluation 𝑛𝑛 = 5 and 𝜗𝜗 to create, 
e.g., HTML code which (IV) is used to display the model in the foreground as feedback about 
the correctness of the formula scheme (yellow solid box). 

DIMO currently supports two more output types besides HTML: plain text and VisSat, an 
internal development aimed at easing the visualisation of matrix-like structures. Figure 3 
shows examples of feedback given in different output types for different problems: HTML for 
the well-known River Crossing Puzzle, plain text for the Queens Problem, and VisSat-output 
for the problem of finding a knight’s tour on a chess board. 

https://ocaml.org/
https://www.typescriptlang.org/
https://angular.io/
https://en.wikipedia.org/wiki/River_crossing_puzzle
https://en.wikipedia.org/wiki/Knight%27s_tour


Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed, 
Issue 16 

eleed 10.57813/eleed.v1i16.257.g455  6 

 
Figure 2. How to use DIMO: (top) lecturer’s creation of templates as parameter declarations 

etc. (grey box) and output programme (green dotted box). (Middle) Students’ attempts at 
modelling by writing formulas in the formula scheme editor (blue box with rounded corners) 
and receiving graphical feedback for different instances (yellow solid boxes), here n=4 and 

n=5. Both are easily seen to be valid solutions. (Bottom) DIMO’s technical process for 
creating graphical feedback. 
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Figure 3. Examples for displaying feedback using three different output types: HTML, plain 

text and VisSat. 

HTML output is particularly useful for modelled problems that come with a straight-forward 
graphical view, like the Queens Problem. VisSat offers a simpler format than HTML output, 
whenever the view is based on a representation of matrices or graphs, in order to avoid hard-
coding tables using tr- and td-tags. Plain text can be used to tweak the difficulty of the 
learning process, for instance by not providing a direct visualisation but requiring students to 
form this visualisation themselves. From a technical point of view, adding new interpreters for 
output languages to DIMO is fairly simple, only requiring their integration as an Angular 
component. 

4. Usage – Examples and Benefits 

DIMO can be used as a self-learning tool or integrated into a course teaching formal 
modelling with PL. It offers a concise language to provide the audience with reasonable 
complex examples of PL formula schemes and live demonstrations of the effect of different 
modelling attempts on the problem at hand. 

Usage Examples 
Even though implementing new visualisations in DIMO’s output language is reasonably easy, 
we recommend the use of DIMO’s template system, which allows instructors to provide a set 
of given output programs for modelling problems, such as the program shown at the top of 
Figure 2. 

In a typical usage scenario, students would be given a modelling exercise and be required to 
use DIMO to create and verify their solutions using the provided output program. The 
following two examples demonstrate this approach. 

Example 1 
PL can be used to transform numbers in decimal format into binary format. This does not 
purely use the satisfiability problem for PL; a satisfying assignment is not just seen as a 
witness for satisfiability but instead as the solution to an exercise. 

Exercise (Building a Binary Encoder): Let n be a natural number. Construct a propositional 
formula 𝛷𝛷(𝑛𝑛) over the variables 𝐵𝐵0, 𝐵𝐵1, . . . , 𝐵𝐵⌈𝑙𝑙𝑜𝑜𝑜𝑜(𝑛𝑛)⌉, such that the interpretation of 𝐵𝐵𝑖𝑖 in every 
model of 𝛷𝛷(𝑛𝑛) is the i-th bit of the binary encoding of 𝑛𝑛, where 𝐵𝐵0 is the most significant and 
𝐵𝐵⌈𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)⌉ the least significant bit. 
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Figure 4. Graphical output for the binary encoder. 

The above exercise contains the names of the propositional variables for the reason that the 
output program needs to access their values to correctly compute the visualisation. This can 
be seen in line 7 of the code in Figure 6, which is provided as a template with the above 
exercise. Note that Figure 6 is an example of an HTML output. A correct solution then leads 
to the graphical output shown in Figure 4. 

Example 2 
We consider the 8-Puzzle problem, a smaller variant of the perhaps better known 15-Puzzle 
problem.  

Exercise (Solving the Eight-Puzzle): Given some instance of the 8-Puzzle problem like the 
following one. 

 
Use propositional logic to determine the number of steps, denoted as n∈N, required to solve 
the instance above. For that, construct a propositional formula 𝛷𝛷(𝑛𝑛) which is satisfiable if and 
only if a solution exists for this puzzle that takes exactly n steps. Use propositional variables 
𝐹𝐹(𝑖𝑖, 𝑗𝑗, 𝑘𝑘,𝑚𝑚) with the interpretation that at step 𝑚𝑚, the number 𝑘𝑘 occupies cell (𝑖𝑖, 𝑗𝑗) on the 8-
Puzzle grid. 

As a template for the latter exercise an output program using HTML can be given as shown 
in Figure 7. A correct solution then leads to the visualisation presented in Figure 5. Note that 
the examples above require the PL variables used to model the problem to be given in the 
exercise, as the output program makes use of them. This has pros and cons. Picking out 
suitable variables is essential for formal PL modelling, and this part of the task is taken out of 
the students’ hands. On the other hand, when the propositional variables are known, DIMO 
can also be used to semi-automatically verify the quality of a solution by checking it for 
equivalence against a master solution. 

https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/15_puzzle
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Figure 5. Graphical output for the 8-puzzle. 

 
Figure 6. Output program for the binary encoder. 
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Figure 7. Output program for the 8-puzzle. 

Preliminary Evaluation 
The extension of DIMO presented in this paper has not yet been implemented in a wider 
course setting. However, to evaluate the graphical-feedback system, we conducted a small 
trial involving nine undergraduate and graduate students. All participants had successfully 
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completed the bachelor's course on (formal languages and) logic, which includes 
propositional modelling as a component. 

The participants were provided with two erroneous formula schemes for two similar one-
player-games: Solitaire and the 8-Puzzle, shown in Figure 10 and Figure 8. For the 8-Puzzle 
the formula scheme claimed to model the existence of a solution taking 𝑛𝑛 steps. The Solitaire 
formula scheme also (erroneously) modelled a sequence of 𝑛𝑛 steps according to the game’s 
rules. For either game, DIMO’s output was presented in textual form and in visualised form. 
Figure 9 exemplarily shows the textual output for the 8-puzzle modelling attempt and Figure 
11 the visualisation for Solitaire. A two-level task was given with a 45 minutes time limit: first, 
find the mistake in the given propositional models; second, suggest how to fix it in the 
formula scheme. Finally, two questions were asked about the perceived difficulty of the given 
exercises and the helpfulness of the presentation form. 

The main result taken from the latter question can be subsumed by the following quote from 
the answers: “The error [in the propositional model] was obvious in the graphical 
representation. The more information is given in textual form, the more difficult it gets to find 
the error.” Seven out of nine students answered the question accordingly, while one student 
found the textual representation more helpful. Moreover, some sparse data on the time spent 
to actually “see” the error in the representation suggests a huge impact on the time needed 
to validate a given model. The latter cannot be explained by a focus effect (mistakes found in 
the first task lead to the mistakes in the second task), as the study group was divided into 
two halves that received the games in different orders. 

Only one student was able to correct the formula for Solitaire in the given time. Note that the 
erroneous formula schemes were given to them and it is commonly known that it is more 
difficult to repair someone else’s code than one’s own [18]. Furthermore, some observations 
made during the study also suggest that the actual form of visualisation has an effect on the 
time spent to pinpoint the mistake. The visualisation that four participants received for 
Solitaire was based on a picture that just contains the actual board of the game, whereas the 
other five were given a visualisation of all propositional variables present in the formula as 
shown in step 1 of Figure 11, i.e. including the outer edge. No student of the first group had 
the correct idea on where the mistake might be found, whereas three students from the 
second group made suggestions on how to correct a formula. 

5. Conclusion 

Based on the theory of modelling developed in the field of didactics of mathematics, we have 
extended DIMO, a learning tool aimed at supporting students in acquiring modelling 
competencies in the area of propositional logic, with the ability to graphically visualise 
solutions derived by propositional models for real-world problems. 

A preliminary evaluation suggests that students perform better in finding errors in models, 
when provided with a suitable visualisation. Thus, this improvement suggests that such visual 
feedback is actually helpful in supporting the validation step in the modelling cycle according 
to Blum and Ferri [15]. 

https://en.wikipedia.org/wiki/Peg_solitaire


Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed, 
Issue 16 

eleed 10.57813/eleed.v1i16.257.g455  12 

Further extensions of DIMO are planned. Currently the DIMO-language only supports natural 
numbers as parameters which restricts possible modelling exercises. A future version will 
include more complex data types like strings or graphs. This will allow modelling tasks to be 
taken from other areas of application, such as string or routing problems (e.g. shortest 
common subsequence, Hamiltonian path in graphs, etc.). 

 
Figure 8. Erroneous modelling of the 8-puzzle problem 

 
Figure 9. Feedback in problem-unspecific form for the 8-puzzle problem. 
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Figure 10. Erroneous modelling of the Solitaire game. 

Figure 11. Problem-specific feedback as a graphical visualisation of the first 3 steps in 
Solitaire. 
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