
Issue 16
2025

Lizenz: fDPPL Jedermann darf dieses Werk unter den Bedingungen der freien Digital Peer Publishing Lizenz
elektronisch übermitteln und zum Download bereitstellen. Der Lizenztext ist im Internet unter der Adresse
https://lizenzen.hbz-nrw.de/dppl/3.0/de abrufbar.

1

Problem-Specific Visual Feedback in Discrete
Modelling

Maurice Herwig
maurice.herwig@uni-kassel.de

Norbert Hundeshagen
hundeshagen@uni-kassel.de

Martin Lange
martin.lange@uni-kassel.de

Theoretical Computer Science / Formal Methods
University of Kassel
Germany

Abstract
Discrete modelling as the basis of problem solving is an essential skill for computer
scientists, but the correct use of formal languages like propositional logic for such purposes
remains a big challenge for undergraduate students. The DIMO tool provides support for the
acquisition of formal modelling competencies using propositional logic. We extend the tool by
generic capabilities to generate problem-specific feedback to students. This allows them to
visualise the result of their modelling attempts in terms of the modelled problem at hand, thus
helping students to initiate corresponding learning cycles.

Keywords: e-learning; propositional logic; teaching modelling; feedback systems; visual
feedback; error-driven learning.

1. Introduction

Formal modelling essentially happens in many places in courses and textbooks on
programming, computational complexity, formal languages and mathematical logic where
specific formalisms are being presented for specific or general modelling tasks, e.g.
programming languages, abstract machines, or logical formulas, cf. [1].

Here we are concerned with formal modelling in propositional logic (PL), a simple language
that is widely used in computer science, from Boolean circuits [2] to planning in A.I. [3],
computer-aided verification [4], cryptanalysis [5] and many more, mainly due to nowadays’
access to highly efficient SAT solvers.

The ability to use such a fundamental modelling language like PL as a problem-solving tool is
a standard competency to be acquired by computer science students. PL is therefore
typically part of compulsory modules on formal logic or discrete mathematics, cf. [6]. The

https://lizenzen.hbz-nrw.de/dppl/3.0/de
mailto:maurice.herwig@uni-kassel.de
mailto:hundeshagen@uni-kassel.de
mailto:martin.lange@uni-kassel.de

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 2

ability to use PL as a modelling language to tackle (real-world) problems typically exceeds
the level of writing and evaluating single formulas. Instead, students must learn to read and
construct parametrised formula schemes, see for instance the standard proof of NP-
hardness of SAT which constructs a formula scheme 𝜑𝜑𝒜𝒜,𝑝𝑝,𝑤𝑤 depending on a Turing machine
𝒜𝒜, a polynomial 𝑝𝑝 and a word 𝑤𝑤. Likewise, the fact that satisfiability for PL is a standard
problem in NP can be used to show that other problems belong to NP as well, for instance
the 3-Colourability problem, by constructing, given an undirected graph 𝐺𝐺, a polynomially
sized formula 𝜑𝜑𝐺𝐺 that is satisfiable iff 𝐺𝐺 is 3-colourable. The ability to correctly read, write and
evaluate such formula schemes introduces a whole new level of difficulty for students.

While there are numerous high-quality learning tools designed to develop basic PL
competencies such as writing, evaluating, and normalising single formulas, as for instance
discussed in an older overview [7], and demonstrated by recent tools [8], these often fall
short when addressing application-oriented formal modelling as described above. The latter
enjoys rudimentary support only, for instances through logical quizzes, with very few notable
exceptions, cf. [9] [10].

We have developed DIMO [11] for that purpose. This learning tool essentially acts like an
interpreter, allowing students to check their formula schemes by enumerating parameters
and testing instances for satisfiability successively. DIMO, in its first version, provides generic
and problem-unspecific output in the form of evaluations of propositional variables. To use
this for checking correctness of a formula scheme, students must link these evaluations to
instances of the real-world problem at hand, which is error-prone and in fact part of the
modelling skill to be learnt in the first place.

This paper extends a preliminary version [12] and reports on extending DIMO’s capabilities to
provide problem-specific output that enhances the learning of formal modelling by enabling
feedback in terms of the modelled problem rather than the formal language of PL to be
learned. Problem-specific output is introduced into DIMO via a simple domain-specific
language (DSL) whose programs turn propositional evaluations into arbitrary (graphical)
output. Students do not need to learn this DSL; it allows teachers to equip their exercises in
the background with a small imperative program that visualises the students’ modelling
effects.

2. Modelling in Propositional Logic – A Didactical Perspective

In general, a PL modelling task is typically an instance of the following scheme.

given: a (real-world) problem 𝐴𝐴 whose instances 𝐴𝐴(𝑝𝑝) depend
 on parameters 𝑝𝑝 and are either solvable or unsolvable

task: construct a propositional formula (scheme) 𝛷𝛷(𝑝𝑝) that
 is satisfiable if and only if 𝐴𝐴(𝑝𝑝) is solvable

For instance, in the example above, 𝐴𝐴 is the Queens Problem, the only parameter is n, and
𝐴𝐴(2), 𝐴𝐴(3) are unsolvable whereas 𝐴𝐴(1) and 𝐴𝐴(𝑛𝑛) for 𝑛𝑛 ≥ 4 are known to be solvable. Logical

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 3

problems other than satisfiability (validity, equivalence, model counting, etc.) can of course
also serve as target problems (and are supported by DIMO, too).

This generalisation offers two insights into difficulties that students have with solving such
exercises. First of all, real-world problems typically depend on domain-specific parameters
that influence the solution of such problems, and so do the constructed PL formulas.
Students need to deal with an additional syntactical dimension on top of the language of PL.
For example, a solution to the modelling task for the Queens Problem using propositions 𝐷𝐷𝑖𝑖,𝑗𝑗
for “α queen is placed on cell (𝑖𝑖, 𝑗𝑗)” typically is a formula scheme of the form:

Φ(𝑛𝑛)  =  …∧ � ⋀
𝑛𝑛−1

𝑖𝑖=1
⋀
𝑛𝑛

𝑗𝑗=1
⋀
𝑛𝑛

𝑖𝑖′=𝑖𝑖+1
𝐷𝐷𝑖𝑖,𝑗𝑗 → ¬𝐷𝐷𝑖𝑖′,𝑗𝑗� ∧ …

The ability to recognize that 𝑛𝑛 is a parameter to this formula whilst 𝑖𝑖, 𝑗𝑗 and 𝑖𝑖′ are meta-
variables used to describe the formula depending on 𝑛𝑛 is not something that students master
easily. The distinction between parameters and propositions is another source for confusion,
and so is a sensible choice of a suitable set of atomic propositions depending on the
parameters. These challenges comprise the syntactic level of learning formal modelling.

Secondly – and which makes up the semantical level of this learning challenge – students
need to verify that their model is correct, i.e. Φ𝑛𝑛 is satisfiable iff the instance of the Queens
Problem for parameter 𝑛𝑛 has a solution. This is typically done by letting a propositional
evaluation encode a problem instance, here a particular placement of the queens. This
requires a deep understanding of the role of different parts of the formula w.r.t. the problem at
hand. The difficulties with the latter can best be described by the theory of Cognitive
Dimensions of Notations, which discusses the accessibility of a (programming) language via
the effect of syntactical changes on the semantics, cf. [13] [14]. Despite its syntactical
simplicity, PL poses difficulties as a modelling formalism because of exactly this property:
small syntactical changes in a formula can have large impacts on its semantics. The art of
learning formal modelling is to start “seeing” how the semantics of a formula changes under
variations in the parameters rather than to only know the meanings of the symbols in the
formula (scheme) in isolation.

The learning tool DIMO addresses challenges on both the syntactical and the semantical
level. Already the first version of DIMO featured a feedback system known from IDEs for
pointing out errors in programming [11], using syntax highlighting and autocompletion to
separate different syntactical elements in what may first appear to be a tangled mass of
symbols to a learning beginner, as shown in Figure 1.

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 4

Figure 1. The interface of DiMo’s previous version with syntax highlighting and human

readable formula representation.

The provision of (tool-)assistance for the semantical level is the focus here. As this concerns
the ability to validate the quality of a model (here: the formula scheme), which forms the core
competency of modelling in general, we incorporate ideas from corresponding theories
targeting related areas in order to enhance DIMO’s learning support capabilities. For
instance, issues and strategies in learning and teaching modelling are well studied in the field
of STEM, cf. [15] [16]. The former describes the modelling process as a cycle that involves a
repeated comparison of the model with the real-world problem; more precisely, the validation
of a model-based solution in the real world is one of the major difficulties for students and, as
pointed out above, one of the most important steps in modelling in PL. Admittedly, the data
for the latter results is based on studies in school mathematics. We believe, based on own
experience and the generality of the competencies needed for formal modelling, that these
results carry over to the undergraduate setting in computer science. Thus, to support learning
in this area the requirements for such a tool are “maximal students independence”, cf. [15] p.
54, and implied “strategic interventions” aimed at the validation step, cf. [15], p. 52. Typical
teachers’ interventions for the latter are questions that encourage students to visualise their
model w.r.t. the real-world problem. This plays a key role in understanding formal principles,
cf. [17].

In PL the latter can be done generically by, for instance, a SAT solver that textually
“visualises” the satisfiability of a formula in form of a satisfying variable assignment, as it is
implemented in DIMO’s first version. In the following we present a more involved visualisation
concept by means of depicting the semantics of a formula in terms of the real-world problem,
thus helping students to initiate the modelling cycle mentioned above.

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 5

3. Extending DiMo

3.1 DIMO’s Main Specs.
We only provide a very brief description of DIMO’s essential architectural structure und
features. From a software architecture point of view, DIMO is a classical web-application with
a backend implemented mainly in OCaml (Objective Caml) and a TypeScript/Angular
frontend. Formula schemes are written in the so-called DIMO-language. A complete tool
description is given in [11].

3.2 DIMO’s Novel Extension: Problem-Specific Visualisation of PL
Models.
The main idea leading to the ability to generate problem-specific visualisations – instead of
plain propositional models – is based on an extension of DIMO’s language by small
imperative programs that can iterate over propositional models and print information in some
interpretable output format. The green dotted box in Figure 2. marks an example program
that is used to produce graphical output for the Queens Problem from above.

The output is generated using for-loops over the domain of parameters (cf. lines 4 and 6 of
the green dotted box), conditional statements over Boolean expressions, in particular,
arithmetic relations (line 7) and truth values of atomic PL variables (line 12). The evaluation
of such programs is done in three-valued logic, as the output program may refer to PL
variables that do not have truth values, for instance because they did not occur in the formula
scheme created by a student. The core of the output language is a simple print-statement
that allows arbitrary strings to be created (line 5 or 13).

This technically simple extension enables the use of different follow-on interpreters for the
strings created by DIMO’s output program for various instances of the formula scheme. The
lower part of Figure 2 shows how problem-specific visualisation can be given for the Queens
Problem 𝑄𝑄 with parameter 𝑛𝑛: (I) the formula scheme Φ𝑄𝑄(𝑛𝑛) (blue box with rounded corners)
is instantiated in the background for some parameter value like 𝑛𝑛 = 5, (II) a SAT solver is
used to compute a satisfying variable assignment 𝜗𝜗 for 𝑄𝑄(5) if there is some, (III) the output
program (green dotted box) is run with the same parameter evaluation 𝑛𝑛 = 5 and 𝜗𝜗 to create,
e.g., HTML code which (IV) is used to display the model in the foreground as feedback about
the correctness of the formula scheme (yellow solid box).

DIMO currently supports two more output types besides HTML: plain text and VisSat, an
internal development aimed at easing the visualisation of matrix-like structures. Figure 3
shows examples of feedback given in different output types for different problems: HTML for
the well-known River Crossing Puzzle, plain text for the Queens Problem, and VisSat-output
for the problem of finding a knight’s tour on a chess board.

https://ocaml.org/
https://www.typescriptlang.org/
https://angular.io/
https://en.wikipedia.org/wiki/River_crossing_puzzle
https://en.wikipedia.org/wiki/Knight%27s_tour

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 6

Figure 2. How to use DIMO: (top) lecturer’s creation of templates as parameter declarations

etc. (grey box) and output programme (green dotted box). (Middle) Students’ attempts at
modelling by writing formulas in the formula scheme editor (blue box with rounded corners)
and receiving graphical feedback for different instances (yellow solid boxes), here n=4 and

n=5. Both are easily seen to be valid solutions. (Bottom) DIMO’s technical process for
creating graphical feedback.

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 7

Figure 3. Examples for displaying feedback using three different output types: HTML, plain

text and VisSat.

HTML output is particularly useful for modelled problems that come with a straight-forward
graphical view, like the Queens Problem. VisSat offers a simpler format than HTML output,
whenever the view is based on a representation of matrices or graphs, in order to avoid hard-
coding tables using tr- and td-tags. Plain text can be used to tweak the difficulty of the
learning process, for instance by not providing a direct visualisation but requiring students to
form this visualisation themselves. From a technical point of view, adding new interpreters for
output languages to DIMO is fairly simple, only requiring their integration as an Angular
component.

4. Usage – Examples and Benefits

DIMO can be used as a self-learning tool or integrated into a course teaching formal
modelling with PL. It offers a concise language to provide the audience with reasonable
complex examples of PL formula schemes and live demonstrations of the effect of different
modelling attempts on the problem at hand.

Usage Examples
Even though implementing new visualisations in DIMO’s output language is reasonably easy,
we recommend the use of DIMO’s template system, which allows instructors to provide a set
of given output programs for modelling problems, such as the program shown at the top of
Figure 2.

In a typical usage scenario, students would be given a modelling exercise and be required to
use DIMO to create and verify their solutions using the provided output program. The
following two examples demonstrate this approach.

Example 1
PL can be used to transform numbers in decimal format into binary format. This does not
purely use the satisfiability problem for PL; a satisfying assignment is not just seen as a
witness for satisfiability but instead as the solution to an exercise.

Exercise (Building a Binary Encoder): Let n be a natural number. Construct a propositional
formula 𝛷𝛷(𝑛𝑛) over the variables 𝐵𝐵0, 𝐵𝐵1, . . . , 𝐵𝐵⌈𝑙𝑙𝑜𝑜𝑜𝑜(𝑛𝑛)⌉, such that the interpretation of 𝐵𝐵𝑖𝑖 in every
model of 𝛷𝛷(𝑛𝑛) is the i-th bit of the binary encoding of 𝑛𝑛, where 𝐵𝐵0 is the most significant and
𝐵𝐵⌈𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)⌉ the least significant bit.

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 8

Figure 4. Graphical output for the binary encoder.

The above exercise contains the names of the propositional variables for the reason that the
output program needs to access their values to correctly compute the visualisation. This can
be seen in line 7 of the code in Figure 6, which is provided as a template with the above
exercise. Note that Figure 6 is an example of an HTML output. A correct solution then leads
to the graphical output shown in Figure 4.

Example 2
We consider the 8-Puzzle problem, a smaller variant of the perhaps better known 15-Puzzle
problem.

Exercise (Solving the Eight-Puzzle): Given some instance of the 8-Puzzle problem like the
following one.

Use propositional logic to determine the number of steps, denoted as n∈N, required to solve
the instance above. For that, construct a propositional formula 𝛷𝛷(𝑛𝑛) which is satisfiable if and
only if a solution exists for this puzzle that takes exactly n steps. Use propositional variables
𝐹𝐹(𝑖𝑖, 𝑗𝑗, 𝑘𝑘,𝑚𝑚) with the interpretation that at step 𝑚𝑚, the number 𝑘𝑘 occupies cell (𝑖𝑖, 𝑗𝑗) on the 8-
Puzzle grid.

As a template for the latter exercise an output program using HTML can be given as shown
in Figure 7. A correct solution then leads to the visualisation presented in Figure 5. Note that
the examples above require the PL variables used to model the problem to be given in the
exercise, as the output program makes use of them. This has pros and cons. Picking out
suitable variables is essential for formal PL modelling, and this part of the task is taken out of
the students’ hands. On the other hand, when the propositional variables are known, DIMO
can also be used to semi-automatically verify the quality of a solution by checking it for
equivalence against a master solution.

https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/15_puzzle

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 9

Figure 5. Graphical output for the 8-puzzle.

Figure 6. Output program for the binary encoder.

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 10

Figure 7. Output program for the 8-puzzle.

Preliminary Evaluation
The extension of DIMO presented in this paper has not yet been implemented in a wider
course setting. However, to evaluate the graphical-feedback system, we conducted a small
trial involving nine undergraduate and graduate students. All participants had successfully

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 11

completed the bachelor's course on (formal languages and) logic, which includes
propositional modelling as a component.

The participants were provided with two erroneous formula schemes for two similar one-
player-games: Solitaire and the 8-Puzzle, shown in Figure 10 and Figure 8. For the 8-Puzzle
the formula scheme claimed to model the existence of a solution taking 𝑛𝑛 steps. The Solitaire
formula scheme also (erroneously) modelled a sequence of 𝑛𝑛 steps according to the game’s
rules. For either game, DIMO’s output was presented in textual form and in visualised form.
Figure 9 exemplarily shows the textual output for the 8-puzzle modelling attempt and Figure
11 the visualisation for Solitaire. A two-level task was given with a 45 minutes time limit: first,
find the mistake in the given propositional models; second, suggest how to fix it in the
formula scheme. Finally, two questions were asked about the perceived difficulty of the given
exercises and the helpfulness of the presentation form.

The main result taken from the latter question can be subsumed by the following quote from
the answers: “The error [in the propositional model] was obvious in the graphical
representation. The more information is given in textual form, the more difficult it gets to find
the error.” Seven out of nine students answered the question accordingly, while one student
found the textual representation more helpful. Moreover, some sparse data on the time spent
to actually “see” the error in the representation suggests a huge impact on the time needed
to validate a given model. The latter cannot be explained by a focus effect (mistakes found in
the first task lead to the mistakes in the second task), as the study group was divided into
two halves that received the games in different orders.

Only one student was able to correct the formula for Solitaire in the given time. Note that the
erroneous formula schemes were given to them and it is commonly known that it is more
difficult to repair someone else’s code than one’s own [18]. Furthermore, some observations
made during the study also suggest that the actual form of visualisation has an effect on the
time spent to pinpoint the mistake. The visualisation that four participants received for
Solitaire was based on a picture that just contains the actual board of the game, whereas the
other five were given a visualisation of all propositional variables present in the formula as
shown in step 1 of Figure 11, i.e. including the outer edge. No student of the first group had
the correct idea on where the mistake might be found, whereas three students from the
second group made suggestions on how to correct a formula.

5. Conclusion

Based on the theory of modelling developed in the field of didactics of mathematics, we have
extended DIMO, a learning tool aimed at supporting students in acquiring modelling
competencies in the area of propositional logic, with the ability to graphically visualise
solutions derived by propositional models for real-world problems.

A preliminary evaluation suggests that students perform better in finding errors in models,
when provided with a suitable visualisation. Thus, this improvement suggests that such visual
feedback is actually helpful in supporting the validation step in the modelling cycle according
to Blum and Ferri [15].

https://en.wikipedia.org/wiki/Peg_solitaire

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 12

Further extensions of DIMO are planned. Currently the DIMO-language only supports natural
numbers as parameters which restricts possible modelling exercises. A future version will
include more complex data types like strings or graphs. This will allow modelling tasks to be
taken from other areas of application, such as string or routing problems (e.g. shortest
common subsequence, Hamiltonian path in graphs, etc.).

Figure 8. Erroneous modelling of the 8-puzzle problem

Figure 9. Feedback in problem-unspecific form for the 8-puzzle problem.

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 13

Figure 10. Erroneous modelling of the Solitaire game.

Figure 11. Problem-specific feedback as a graphical visualisation of the first 3 steps in
Solitaire.

Acknowledgments
The work is partially funded by the “Stiftung Innovation in der Hochschullehre” within the
project UKS_digi.

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 14

6. Bibliography

[1] Huth, M.; Ryan, M.: Logic in computer science: modelling and reasoning about systems.
Cambridge University Press, Cambridge, 2004.

[2] Parkes, A. P.: Boolean Logic and Propositional Logic. In: Introduction to Languages,
Machines and Logic: Computable Languages, Abstract Machines and Formal Logic,
Springer, 2002, pp. 275–290. DOI: https://doi.org/10.1007/978-1-4471-0143-7_13 (last check
2025-09-23)

[3] Kautz, H. A.; Selman, B.: Planning as Satisfiability. In: Proc. of the 10th European Conf.
on Artificial Intelligence, ECAI'92, 1992, pp. 359-363.
https://dl.acm.org/doi/10.5555/145448.146725 (last check 2025-09-23)

[4] Clarke, E. M.; Biere, A.; Raimi, R.; Zhu, Y.: Bounded Model Checking Using Satisfiability
Solving. In: Formal Methods in System Design, 2001, vol. 19, p. 7–34.
https://link.springer.com/article/10.1023/A:1011276507260 (last check 2025-09-23)

[5] Massacci, F.; Marraro, L.: Logical Cryptanalysis as a SAT Problem. In: J. of Automated
Reasoning, 2000, vol. 24, pp. 165–203.
https://link.springer.com/article/10.1023/A:1006326723002 (last check 2025-09-23)

[6] Gesellschaft für Informatik (GI): Empfehlungen für Bachelor- und Masterprogramme im
Studienfach Informatik an Hochschulen. Gesellschaft für Informatik e.V., Bonn, 2016.
https://dl.gi.de/items/0986c100-a3b9-47c8-8173-54c16d16c24e (last check 2025-09-23)

[7] Huertas, M. A.: A classification of tools for learning logic. Universitat Oberta de Catalunya,
2011. https://openaccess.uoc.edu/items/8213d5fe-b877-4a3c-9e64-3ebce046b9b7#page=1
(last check 2025-09-23)

[8] Geck, G.; Ljulin, A.; Peter, S.; Schmidt, J.; Vehlken, F.; Zeume, T.: Introduction to Iltis: an
interactive, web-based system for teaching logic. In: Proc. of the 23rd Annual ACM Conf. on
Innovation and Technology in Computer Science Education, ITiCSE'18, 2018, pp. 141-146.
https://doi.org/10.1145/3197091.319709 (last check 2025-09-23)

[9] Fernandez, J.; Gasquet, O.; Herzig, A.; Longin, D.; Lorini, E.; Maris, F.; Régnier, P.:
TouIST: a Friendly Language for Propositional Logic and More. In: Proc. of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, Yokohama, 2020, pp.
5240-5242. https://www.ijcai.org/proceedings/2020/756 (last check 2025-09-23)

[10] Gasquet, O.; Schwarzentruber, F.; Strecker, M.: Satoulouse: The Computational Power
of Propositional Logic Shown to Beginners. In: Proc. of the Third International Congress on
Tools for Teaching Logic, TICTTL 2011, 2011, pp. 77-84.
https://link.springer.com/chapter/10.1007/978-3-642-21350-2_10 (last check 2025-09-23)

[11] Hundeshagen, N.; Lange, M.; Siebert, G.: DiMo - Discrete Modelling Using Propositional
Logic. In: Proc. of the 24th Int. Conf. on Theory and Applications of Satisfiability Testing,
SAT'21, 2021, pp. 242-250. DOI: 10.1007/978-3-030-80223-3_17
https://link.springer.com/chapter/10.1007/978-3-030-80223-3_17 (last check 2025-09-23)

[12] Herwig, M.; Hundeshagen, N.; Hundhausen, J.; Kablowski, S.; Lange, M.: Problem-
Specific Visual Feedback in Discrete Modelling. In: Proc. of DELFI 2024 - Die 22.
Fachtagung Bildungstechnologien der GI, Fulda, Germany, 2024.

https://doi.org/10.1007/978-1-4471-0143-7_13
https://dl.acm.org/doi/10.5555/145448.146725
https://link.springer.com/article/10.1023/A:1011276507260
https://link.springer.com/article/10.1023/A:1006326723002
https://dl.gi.de/items/0986c100-a3b9-47c8-8173-54c16d16c24e
https://openaccess.uoc.edu/items/8213d5fe-b877-4a3c-9e64-3ebce046b9b7#page=1
https://doi.org/10.1145/3197091.319709
https://www.ijcai.org/proceedings/2020/756
https://link.springer.com/chapter/10.1007/978-3-642-21350-2_10
https://link.springer.com/chapter/10.1007/978-3-030-80223-3_17

Herwig M., Hundeshagen N., Lange M. (2025). Problem-Specific Visual Feedback in Discrete Modelling. eleed,
Issue 16

eleed 10.57813/eleed.v1i16.257.g455 15

https://dl.gi.de/server/api/core/bitstreams/15d05563-a785-4968-babc-111bc9c1b521/content
(last check 2025-09-23)

[13] Green, T. R. G.: Cognitive dimensions of notations. In: People and Computers V.
University Press, The Pennsylvania State University, 1989.
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/papers/Green1989.pdf (last check
2025-09-23)

[14] Green, T. R. G.: Instructions and Descriptions: some cognitive aspects of programming
and similar activities. In: Proc. of the Working Conf. on Advanced Visual Interfaces, AVI'00,
2000, pp. 21-28. https://dl.acm.org/doi/10.1145/345513.345233 (last check 2025-09-23)

[15] Blum, W.; Borromeo Ferri, R.: Mathematical Modelling: Can It Be Taught And Learnt? In:
Journal of Mathematical Modelling and Application, vol. 1, December 2009.
https://eclass.uoa.gr/modules/document/file.php/MATH601/3rd%20%26%204rth%20unit/3rd
%20unit_Modelling%20cycle.pdf (last check 2025-09-23)

[16] Greca, I. M.; Moreira, M. A.: Mental, physical, and mathematical models in the teaching
and learning of physics. In: Science Education, vol. 86, pp. 106-121, 2002.
https://onlinelibrary.wiley.com/doi/10.1002/sce.10013 (last check 2025-09-23)

[17] Arcavi, A.: The role of visual representations in the learning of mathematics. In:
Educational Studies in Mathematics, 2003, 52(3), pp. 215-241.
https://link.springer.com/article/10.1023/A:1024312321077 (last check 2025-09-23)

[18] Lakhotia, A.: Understanding someone else's code: Analysis of experiences. In: Journal of
Systems and Software, 1993, vol. 23, pp. 269-275. https://doi.org/10.1016/0164-
1212(93)90101-3 (last check 2025-09-23)

https://dl.gi.de/server/api/core/bitstreams/15d05563-a785-4968-babc-111bc9c1b521/content
https://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions/papers/Green1989.pdf
https://dl.acm.org/doi/10.1145/345513.345233
https://eclass.uoa.gr/modules/document/file.php/MATH601/3rd%20%26%204rth%20unit/3rd%20unit_Modelling%20cycle.pdf
https://eclass.uoa.gr/modules/document/file.php/MATH601/3rd%20%26%204rth%20unit/3rd%20unit_Modelling%20cycle.pdf
https://onlinelibrary.wiley.com/doi/10.1002/sce.10013
https://link.springer.com/article/10.1023/A:1024312321077
https://doi.org/10.1016/0164-1212(93)90101-3
https://doi.org/10.1016/0164-1212(93)90101-3

	Problem-Specific Visual Feedback in Discrete Modelling
	Abstract

	1. Introduction
	2. Modelling in Propositional Logic – A Didactical Perspective
	3. Extending DiMo
	3.1 DIMO’s Main Specs.
	3.2 DIMO’s Novel Extension: Problem-Specific Visualisation of PL Models.

	4. Usage – Examples and Benefits
	5. Conclusion
	6. Bibliography

